Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.08.25.23294606

RESUMEN

Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, BA.2-descendent lineages have become dominant, such as XBB.1.5 or BA.2.86. Here, we assessed how different COVID-19 priming regimens affect the immunogenicity of the recently used bivalent booster vaccinations and breakthrough infections. BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, we highlight important "lessons learned" from the employed COVID-19 vaccination strategies. Our data further support the use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.


Asunto(s)
Deficiencia de Proteína S , Dolor Irruptivo , COVID-19
2.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.12.18.22283593

RESUMEN

Background Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and Omicron spike protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We compared the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent Omicron BA.1 vaccines in individuals who were primed with adenovirus- or mRNA-based vaccines. Methods In this open-label, multicenter, randomized, controlled trial, healthcare workers primed with Ad26.COV2.S or mRNA-based vaccines were boosted with mRNA-1273.214 or BNT162b2 OMI BA.1. The primary endpoint was the fold change in S1-specific IgG antibodies pre- and 28 days after booster vaccination. Secondary outcomes were fast response, (antibody levels on day 7), reactogenicity, neutralization of circulating variants and (cross-reactive) SARS-CoV-2-specific T-cell responses. Findings No effect of different priming regimens was observed on bivalent vaccination boosted S1-specific IgG antibodies. The largest increase in S1-specific IgG antibodies occurred between day 0 and 7 after bivalent booster. Neutralizing antibodies targeting the variants in the bivalent vaccine (ancestral SARS-CoV-2 and Omicron BA.1) were boosted. In addition, neutralizing antibodies against the circulating Omicron BA.5 variant increased after BA.1 bivalent booster. T-cell responses were boosted and retained reactivity with variants from the Omicron sub-lineage. Interpretation Bivalent booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 resulted in a rapid recall of humoral and cellular immune responses independent of the initial priming regimen. Although no preferential boosting of variant-specific responses was observed, the induced antibodies and T-cells cross-reacted with Omicron BA.1 and BA.5. It remains crucial to monitor immunity at the population level, and simultaneously antigenic drift at the virus level, to determine the necessity (and timing) of COVID-19 booster vaccinations.


Asunto(s)
COVID-19
3.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.12.12.22283282

RESUMEN

Background. Bacillus Calmette-Guerin (BCG) vaccination has been hypothesised to reduce SARS-CoV-2 infection, severity, and/or duration via trained immunity induction. Methods. Healthcare workers (HCWs) in 9 Dutch hospitals were randomised to BCG or placebo vaccination (1:1) in March/April 2020 and followed for one year. They reported daily symptoms, SARS-CoV-2 test results, and healthcare-seeking behaviour via a smartphone application, and donated blood for SARS-CoV-2 serology at two time points. Results. 1,511 HCWs were randomised and 1,309 analysed (665 BCG and 644 placebo). Of the 298 infections detected during the trial, 74 were detected by serology only. The SARS-CoV-2 incidence rates were 0.25 and 0.26 per person-year in the BCG and placebo groups, respectively (incidence rate ratio=0.95; 95% confidence interval 0.76-1.21; p=0.732). Only three participants required hospitalisation for COVID-19. The proportions of participants with asymptomatic, mild, or mild-to-moderate infections, and the mean infection durations, did not differ between randomisation groups. Unadjusted and adjusted logistic regression and Cox proportional hazards models showed no differences between BCG and placebo vaccination for any of these outcomes either. The percentage of participants with seroconversion (7.8% versus 2.8%; p=0.006) and mean anti-S1 antibody concentration (13.1 versus 4.3 IU/ml; p=0.023) were higher in the BCG than placebo group at 3 months but not at 6 or 12 months post-vaccination. Conclusions. BCG vaccination of HCWs did not reduce SARS-CoV-2 infections nor infection duration or severity (on a scale from asymptomatic to moderate). In the first 3 months after vaccination, BCG vaccination may enhance SARS-CoV-2 antibody production during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
4.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.07.15.22277639

RESUMEN

A large proportion of the global population received a single dose of the Ad26.COV2.S coronavirus disease-2019 (COVID-19) vaccine as priming vaccination, which was shown to provide protection against moderate to severe COVID-19. However, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants that harbor immune-evasive mutations in the spike protein led to the recommendation of booster vaccinations after Ad26.COV2.S priming. Recent studies showed that heterologous booster vaccination with an mRNA-based vaccine following Ad26.COV2.S priming leads to high antibody levels. However, how heterologous booster vaccination affects other functional aspects of the immune response remains unknown. Here, we performed immunological profiling on samples obtained from Ad26.COV2.S-vaccinated individuals before and after a homologous (Ad26.COV2.S) or heterologous (mRNA-1273 or BNT162b2) booster vaccination. Both homologous and heterologous booster vaccination increased antibodies with multiple functionalities towards ancestral SARS-CoV-2, the Delta and Omicron BA.1 variants. Especially, mRNA-based booster vaccination induced high levels of neutralizing antibodies and antibodies with various Fc-mediated effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. In contrast, T cell responses were similar in magnitude following homologous or heterologous booster vaccination, and retained functionality towards Delta and Omicron BA.1. However, only heterologous booster vaccination with an mRNA-based vaccine led to the expansion of SARS-CoV-2-specific T cell clones, without an increase in the breadth of the T cell repertoire as assessed by T cell receptor sequencing. In conclusion, we show that Ad26.COV2.S priming vaccination provides a solid immunological base for heterologous boosting with an mRNA-based COVID-19 vaccine, increasing humoral and cellular responses targeting newly emerging variants of concern.


Asunto(s)
Infecciones por Coronavirus , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , COVID-19
6.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21264979

RESUMEN

Background In face of the developing COVID-19 pandemic with a need for rapid and practical vaccination strategies, Ad26.COV2.S was approved as single shot immunization regimen. While effective against severe COVID-19, Ad26.COV2.S vaccination induces lower SARS-CoV-2-specific antibody levels compared to its mRNA-based counterparts. To support decision making on the need for booster vaccinations in Ad26.COV2.S-primed individuals, we assessed the immunogenicity and reactogenicity of homologous and heterologous booster vaccinations in Ad26.COV2.S-primed health care workers (HCWs). Methods The SWITCH trial is a single-(participant)-blinded, multi-center, randomized controlled trial among 434 HCWs who received a single Ad26.COV2.S vaccination. HCWs were randomized to no boost, Ad26.COV2.S boost, mRNA-1273 boost, or BNT162b2 boost. We assessed the level of SARS-CoV-2-specific binding antibodies, neutralizing antibodies against infectious virus, SARS-CoV-2-specific T-cell responses, and reactogenicity. Results Homologous and heterologous booster vaccinations resulted in an increase in SARS-CoV-2-specific binding antibodies, neutralizing antibodies and T-cell responses when compared to single Ad26.COV.2.S vaccination. In comparison with the homologous boost, the increase was significantly larger in heterologous regimens with the mRNA-based vaccines. mRNA-1273 boosting was most immunogenic, associated with higher reactogenicity. Only mild to moderate local and systemic reactions were observed on the first two days following booster. Conclusions Boosting of Ad26.COV2.S-primed HCWs was well-tolerated and immunogenic. Strongest responses were detected after boosting with mRNA-based vaccines. Based on our data, efficacy on infection and transmission of boosters is expected. In addition to efficacy, decision making on boost vaccinations should include timing, target population, level of SARS CoV-2 circulation, and the global inequity in vaccine access. Trial registration. Funded by ZonMW (10430072110001); ClinicalTrials.gov number, NCT04927936.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA